ESTO

LEO Download Capacity Analysis for a Network of Adaptive Array Ground Stations

Dr. Mary Ann Ingram

School of Elect. and Comp. Eng, Georgia Institute of Technology

June 28, 2005

Co-Authors:

Mr. William Barott and Dr. Paul Steffes – GaTech;

Drs. Zoya Popoviécand Sébastien Rondineau – Univ. Col,

Dr. John Langley – Saquish Grp.;

Drs. Robert Romanofsky, Richard Lee, and Felix Miranda – GRC;

Mr. Dan Mandl – GSFC

Overview

- ◆ Current Technology and Vision
- ◆ Antenna Technologies
 - Reflectarray
 - Space-fed lens
 - Inflatable Array
- ♦ Network Capacity Analysis
- Conclusion

The Current Technology

Large dishes in Poker Flats Alaska, Svalbord, Norway, and McMurdo Station, Antartica, each track one satellite at a time

Limited Coverage Area

Harsh Environment Costly Maintenance

The Vision for a New Ground Network

4

Space-time Adaptive Processing (STAP) arth Science Technology Office

5

Demonstrations at Georgia Tech for SAC-C Satellite (6 Mbps @ X-band)

- This summer, with four inflatable dish antennas and full mechanical steering
- ◆ This winter, with four space-fed lenses being developed at University of Colorado

Overview

- ◆ Current Technology and Vision
- ◆ Antenna Technologies
- Inflatable Dishes
- Space-fed lens
- Reflectarray
- ♦ Network Capacity Analysis
- ◆ Conclusion

Four Element Inflatable Reflector Array Science Technology Office

Expected Delivery to Ga Tech

August 1, 2005

ESTO

Earth Science Technology Office

Films for the Inflatable Dish Antennas

Overview

- ◆ Antenna Technologies
 - Inflatable Array
- - Space-fed lens
 - Reflectarray
 - ♦ Network Capacity Analysis
 - ◆ Conclusion

The Space-fed Lens (SFL)

SFL Beam Radiation Patterns for 32 Feed Science Technology Office **Elements**

Scanning Loss – Loss in Peak Gain as Earth Science Technology Office Beam Steers Away from Broadside

SFL Intregration Schedule

1/4 of the feeding network:

SFL delivery to U of Col.: July 28th

SFL-feeding network mounting: Beginning of August

Integrated SFL testing: Middle of August. Measurements will be done at NASA GRC.

Bias lines are not added for picture clarity.

Overview

- ◆ Current Technology and Vision
- ◆ Antenna Technologies
 - Inflatable Array
 - Space-fed lens
- - Reflectarray
 - ♦ Network Capacity Analysis
 - Conclusion

Ferroelectric Reflectarray

- Uses thin film ferroelectric phase shifters for elevation control and a stepper motor for azimuth beam steering
- ◆ Elevation-only electronic steering reduces phase shifter count from N² to N, where N is the number of radiating elements
- Very cost effective due to integration simplicity, reduced phase shifter cost, and radiators can be fabricated on "soft" substrates

Overview

- ◆ Current Technology and Vision
- ◆ Antenna Technologies
 - Inflatable Array
 - Space-fed lens
 - Reflectarray
- → Network Capacity Analysis
 - Conclusion

Network Capacity Analysis

- Relates download capacity of the network to ground station design parameters
 - Number of ground stations
 - Number of antennas per ground station
 - Data rate
 - Dish vs. Hybrid electronic/mechanical scan

Capacity Metrics

- ◆ Average per day capacity in bits
- ◆ Assumes transmission happens only when link SNR > 6.38dB
- ◆ Average per pass based on 1º intervals multiplied by 14.68 passes/day

Cases Studied for EO-1 X-band (105 Mbps)

- 1. 11 m dish at Poker Flats, Alaska
- 2. Ground stations comprising multiple 0.75m dishes
- 3. Ground stations comprising space fed lenses

CASE 2: Ground Stations with Multiple Dishes

- ◆ Based on Motosat 0.75m
- Perfect steering, perfect polarization matching
- ◆ Path loss, 6.5 dB implementation loss (from RFICD for EO-1); no fading
- ◆ Ground station T=150K

ESTO

22

Energy per Bit per Noise Spectral Density 22 (E_b/N_o) Contours

Case 1:11-meter Dish Poker Flats, Alaska: 105Mbps 585Gb/day

Case 2: 7 Dishes/Station Seattle, Bangor: 105Mbps 587Gb/day

Summary of 105 Mbps Results for Cases Early Science Technology Office and 2

TX rate (Mbps)	Network	Total Number of Dishes	Avg Daily Capacity (Gb)
105	11m Poker Flats (PF)	1	585
105	5 el X3	15	545
105	5 el X2, 6 el X1	16	578
105	7 el X2	14	587
105	3 el X4	12	427

Fewer stations with more elements gives highest capacity, because they have lowest elevation coverage

Different Data Rates With 3 Dishes Each at Seattle, Bangor

105 Mbps 246 Gb/day

50 Mbps 270 Gb/day

Total network EB/NO as a function of subsatellite point

-200 -180 -160 -140 -120 -100 -80 -60

Degrees Longitude

50 Mbps case increases the capacity because the coverage area is more than doubled

Different Rates With Motosat: 7 Dishes Each at Seattle, Bangor

25

105 Mbps 587gb/day

50 Mbps 279gb/day

105 Mbps case already reaches down to 5 degrees elevation, so 50 Mbps does not increase the coverage area

Optimizing the Tilts of SFLs

Impact of Tilt Optimization— Link Gain vs. Elevation

 all tilted to 50 degrees elevation

minimum link gain for acquisition

- - - - Tilt angles optimized for scan loss

	Lowest Elevation	
All tilted to 50°	220	
Optimized	5 0	

Small Dishes vs. Optimized SFLs

7-Element Motosat Seattle, Bangor: 105Mbps 587Gb/day

8-Element Optimized SFL Seattle, Bangor: 105Mbps 587Gb/day

No wasted power indicated by nearly uniform blue in the right figure

Prototype SFL Azimuth Turntable ESTO Allows Tilt Optimization 29

Overview

- ◆ Current Technology and Vision
- ◆ Antenna Technologies
 - Inflatable Array
 - Space-fed lens
 - Reflectarray
- ♦ Network Capacity Analysis
- → Conclusion

Conclusions

- ◆ A few ground stations in non-arctic zones with 7 to 8 directional elements each can equal the download capacity of the 11m dish for EO-1
- Lower data rates can still provide large download capability, because they increase the coverage area (connect time)
- Optimization of tilts of space fed lenses makes a significant difference
- The SFL has the added benefit of multisatellite tracking capability